BASIC GEOMETRIC FORMULAS AND PROPERTIES

This handout is intended as a review of basic geometric formulas and properties. For further or more advanced geometric formulas and properties, consult with a SLAC counselor.

Square:

Perimeter: $\mathrm{P}=4 \mathrm{~s}$ or $2 \mathrm{~s}+2 \mathrm{~s}$
Area: $\mathrm{A}=\mathrm{s}^{2}$

Rectangle:

Perimeter: $\mathrm{P}=2 \mathrm{w}+2 l$
Area: $\mathrm{A}=l \times \mathrm{w}$

Triangles:

Perimeter: $\mathrm{P}=\mathrm{a}+\mathrm{b}+\mathrm{c}$
Area: $A=(1 / 2) \times b \times h$
Types of Triangles:
Isosceles (two equal sides)
l

Equilateral (all sides equal)
Right (one 90° or right angle)
Pythagorean Theorem (for right triangles only):

$$
a^{2}+b^{2}=c^{2}
$$

Sum of the Angles (all triangles):

$$
\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}
$$

Circle:

Diameter: $\mathrm{d}=2 \mathrm{r}$
Circumference: $\mathrm{C}=2 \pi \mathrm{r}=\pi \mathrm{d}$
Area: $\mathrm{A}=\pi \mathrm{r}^{2}$

Rectangular Solid:

Volume: $\mathrm{V}=l \times \mathrm{w} \times \mathrm{h}$
Surface Area: $\mathrm{S}=(2 \times \mathrm{h} \times \mathrm{w})+(2 \times l \times \mathrm{h})+(2 \times l \times w)$

Right Circular Cylinder:

Volume: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$
Surface Area: $\mathrm{S}=2 \pi \mathrm{rh}+2 \pi \mathrm{r}^{2}$

Complementary Angles:

Two angles are complementary if the sum of their measures is 90°. Angles A and B are complementary angles. Angles A and C are complementary angles.

Supplementary Angles:

Two angles are supplementary
if the sum of their measures
is 180°.

Angles 1 and 2 are supplementary angles. Angles
2 and 4 are supplementary angles.

Opposite/Vertical Angles:

The intersection of two lines, m_{1} and m_{3}, form four angles. Opposite (vertical) angles are congruent (have equal measures).

Angles 1 and 4 are congruent.
Angles 2 and 3 are congruent.

Alternate Interior and Exterior Angles:

Lines m_{1} and m_{2} are parallel.
Angles 4 and 5 are called alternate interior angles. Alternate interior angles are congruent.

Angles 3 and 6
are also alternate interior angles.
Angles 2 and 7 are called alternate exterior angles.

Alternate exterior
angles are congruent.
Angles 1 and 8
are also alternative exterior angles.
Note: Angles 1 and 4 are congruent. (opposite/vertical angles)
Angles 4 and 5 are congruent. (alternate interior angles)
Angles 5 and 8 are congruent. (opposite/vertical angles)
Angles 1 and 8 are congruent. (alternate exterior angles)
Angles 2 and 6 are congruent. (corresponding angles)
Angles 3 and 7 are congruent. (corresponding angles)
etc.

Straight Lines:

Straight lines have degrees measuring 180°. If D to B is a straight line, then angle DCB is 180°.

BASIC PROBLEMS OF GEOMETRY

1. Two sides of a triangle are 7 and 13 centimeters. The perimeter is 27 centimeters. Find the third side.
2. Find the area of the triangle:

8
3. If a square has an area of $49 \mathrm{ft}^{2}$, what is the length of one of its sides? The perimeter?
4. If a rectangle has a width of 4 , how long must its length be so that the area is 36 ?
5. If one angle of a right triangle is 70°, what are the other 2 angles?
6. Find b:

7. What is the diameter of a circle with an area of 16π ?
8. What is the circumference of the circle in problem 7 ? (allow $\pi=3.14$)
9. If a box has a height of 4 in., a length of 12 in., and a volume $240 \mathrm{in}^{3}{ }^{3}$, what is the box's width?
10. Find the volume: (allow $\pi=3.14)$

11. Lines m_{1} and m_{2} are parallel, what is the measure of angle 1 ?
12. What is the measure of angle 5?
13. What is the measure of angle 4 ?

SOLUTIONS/ANSWERS

1. $\mathrm{P}=\mathrm{a}+\mathrm{b}+\mathrm{c}$
$27=7+13+c$
$7=c$
($c=7$ centimeters)
2. $\mathrm{A}=(1 / 2) \times b \times h$
$A=(1 / 2) \times 8 \times 4$
$A=16$
$(\mathrm{A}=16)$ units 2
3. $\mathrm{A}=\mathrm{s}^{2}$
$A=49$
$A=7^{2}$
s $=7$
($\mathrm{s}=7 \mathrm{ft}$.
$\mathrm{P}=4(7)$
$P=28$

$$
\text { (} \mathrm{P}=28 \mathrm{ft} .)
$$

4. $\mathrm{A}=l \times w$
$36=l \times 4$
$9=1$
($l=9$ units)
5. Right triangle has one 90° angle

Problem tells us another angle is 70°
Sum of Angles: $A+B+C=180^{\circ}$

$$
\begin{aligned}
90^{\circ}+70^{\circ}+\mathrm{C} & =180^{\circ} \\
\mathrm{C} & =20^{\circ} \quad\left(\mathrm{C}=20^{\circ}\right)
\end{aligned}
$$

6. Right Triangles
$a^{2}+b^{2}=c^{2}$
$4^{2}+b^{2}=5^{2}$
$16+b^{2}=25$
$b^{2}=9$
$\mathrm{b}=3$
7. $\mathrm{A}=\pi r^{2}$
$16 \pi=\pi r^{2}$
$\frac{16}{\pi}=\frac{\pi r^{2}}{\pi}$
$16=r^{2}$
$r=4$
$d=2 r=2(4)=8$
(d = 8 units)
8. $\mathrm{C}=2 \pi 4$
$\mathrm{C}=2 \pi(4)$
$\mathrm{C}=8 \pi \quad(\pi=3.14)$
$C=8(3.14)$
$C=25.13$
($C=25.13$ units)
9. $\mathrm{V}=l \times w \times h$
$240=12 \times w \times 4$
5 = w
($\mathrm{w}=5 \mathrm{in}$.)
10. $\mathrm{V}=\pi \times r^{2} \times h$
$\mathrm{V}=\pi \times 2^{2} \times 7$
$\mathrm{V}=\pi \times 4 \times 7$
$\mathrm{V}=28(3.14) \quad(\pi=3.14)$
$V=87.92$

$$
\left(\mathrm{V}=87.92 \text { unit }^{3}\right)
$$

11. Straight lines have a degree measure of 180° $180^{\circ}-120^{\circ}=60^{\circ}$
12. Angle $1=60^{\circ}$ (above)

Angle $8=60^{\circ}$ (alternate exterior of angle 1)
Angle $5=60^{\circ}$ (opposite/vertical of angle 8) (Angle $5=60^{\circ}$)
13. Angle $4=60^{\circ}$ (opposite interior of angle 5 above)

OR
(straight lines [the diagonal of m_{2}] have a degree measure of 180°)

OR
(opposite vertical with angle 1)
(Angle $4=60^{\circ}$)

